3.2868 \(\int \frac{(c+d x)^4}{(a+b (c+d x)^3)^2} \, dx\)

Optimal. Leaf size=172 \[ \frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{9 \sqrt [3]{a} b^{5/3} d}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}-\frac{2 \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} \sqrt [3]{a} b^{5/3} d}-\frac{(c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )} \]

[Out]

-(c + d*x)^2/(3*b*d*(a + b*(c + d*x)^3)) - (2*ArcTan[(a^(1/3) - 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3))])/(3*Sq
rt[3]*a^(1/3)*b^(5/3)*d) - (2*Log[a^(1/3) + b^(1/3)*(c + d*x)])/(9*a^(1/3)*b^(5/3)*d) + Log[a^(2/3) - a^(1/3)*
b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2]/(9*a^(1/3)*b^(5/3)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.136412, antiderivative size = 172, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.381, Rules used = {372, 288, 292, 31, 634, 617, 204, 628} \[ \frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{9 \sqrt [3]{a} b^{5/3} d}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}-\frac{2 \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt{3} \sqrt [3]{a}}\right )}{3 \sqrt{3} \sqrt [3]{a} b^{5/3} d}-\frac{(c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^4/(a + b*(c + d*x)^3)^2,x]

[Out]

-(c + d*x)^2/(3*b*d*(a + b*(c + d*x)^3)) - (2*ArcTan[(a^(1/3) - 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3))])/(3*Sq
rt[3]*a^(1/3)*b^(5/3)*d) - (2*Log[a^(1/3) + b^(1/3)*(c + d*x)])/(9*a^(1/3)*b^(5/3)*d) + Log[a^(2/3) - a^(1/3)*
b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2]/(9*a^(1/3)*b^(5/3)*d)

Rule 372

Int[(u_)^(m_.)*((a_) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m), Subst[Int[x^m
*(a + b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, m, n, p}, x] && LinearPairQ[u, v, x]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{(c+d x)^4}{\left (a+b (c+d x)^3\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (a+b x^3\right )^2} \, dx,x,c+d x\right )}{d}\\ &=-\frac{(c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}+\frac{2 \operatorname{Subst}\left (\int \frac{x}{a+b x^3} \, dx,x,c+d x\right )}{3 b d}\\ &=-\frac{(c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx,x,c+d x\right )}{9 \sqrt [3]{a} b^{4/3} d}+\frac{2 \operatorname{Subst}\left (\int \frac{\sqrt [3]{a}+\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{9 \sqrt [3]{a} b^{4/3} d}\\ &=-\frac{(c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac{\operatorname{Subst}\left (\int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac{\operatorname{Subst}\left (\int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{3 b^{4/3} d}\\ &=-\frac{(c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}\right )}{3 \sqrt [3]{a} b^{5/3} d}\\ &=-\frac{(c+d x)^2}{3 b d \left (a+b (c+d x)^3\right )}-\frac{2 \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}}{\sqrt{3}}\right )}{3 \sqrt{3} \sqrt [3]{a} b^{5/3} d}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{9 \sqrt [3]{a} b^{5/3} d}+\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{9 \sqrt [3]{a} b^{5/3} d}\\ \end{align*}

Mathematica [A]  time = 0.0969582, size = 152, normalized size = 0.88 \[ \frac{\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{\sqrt [3]{a}}-\frac{3 b^{2/3} (c+d x)^2}{a+b (c+d x)^3}-\frac{2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{\sqrt [3]{a}}+\frac{2 \sqrt{3} \tan ^{-1}\left (\frac{2 \sqrt [3]{b} (c+d x)-\sqrt [3]{a}}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt [3]{a}}}{9 b^{5/3} d} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^4/(a + b*(c + d*x)^3)^2,x]

[Out]

((-3*b^(2/3)*(c + d*x)^2)/(a + b*(c + d*x)^3) + (2*Sqrt[3]*ArcTan[(-a^(1/3) + 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^
(1/3))])/a^(1/3) - (2*Log[a^(1/3) + b^(1/3)*(c + d*x)])/a^(1/3) + Log[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) + b^
(2/3)*(c + d*x)^2]/a^(1/3))/(9*b^(5/3)*d)

________________________________________________________________________________________

Maple [C]  time = 0.011, size = 141, normalized size = 0.8 \begin{align*}{\frac{1}{b{d}^{3}{x}^{3}+3\,bc{d}^{2}{x}^{2}+3\,b{c}^{2}dx+b{c}^{3}+a} \left ( -{\frac{d{x}^{2}}{3\,b}}-{\frac{2\,cx}{3\,b}}-{\frac{{c}^{2}}{3\,bd}} \right ) }+{\frac{2}{9\,{b}^{2}d}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{3}b{d}^{3}+3\,{{\it \_Z}}^{2}bc{d}^{2}+3\,{\it \_Z}\,b{c}^{2}d+b{c}^{3}+a \right ) }{\frac{ \left ({\it \_R}\,d+c \right ) \ln \left ( x-{\it \_R} \right ) }{{d}^{2}{{\it \_R}}^{2}+2\,cd{\it \_R}+{c}^{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^4/(a+b*(d*x+c)^3)^2,x)

[Out]

(-1/3/b*x^2*d-2/3/b*x*c-1/3*c^2/b/d)/(b*d^3*x^3+3*b*c*d^2*x^2+3*b*c^2*d*x+b*c^3+a)+2/9/b^2/d*sum((_R*d+c)/(_R^
2*d^2+2*_R*c*d+c^2)*ln(x-_R),_R=RootOf(_Z^3*b*d^3+3*_Z^2*b*c*d^2+3*_Z*b*c^2*d+b*c^3+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{d^{2} x^{2} + 2 \, c d x + c^{2}}{3 \,{\left (b^{2} d^{4} x^{3} + 3 \, b^{2} c d^{3} x^{2} + 3 \, b^{2} c^{2} d^{2} x +{\left (b^{2} c^{3} + a b\right )} d\right )}} + \frac{2 \,{\left (-\frac{1}{3} \, \sqrt{3} \left (-\frac{1}{a b^{2} d^{3}}\right )^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac{2}{3}}\right )}}{3 \, \left (-a^{2} b\right )^{\frac{2}{3}}}\right ) - \frac{1}{6} \, \left (-\frac{1}{a b^{2} d^{3}}\right )^{\frac{1}{3}} \log \left ({\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac{2}{3}}\right )}^{2} + 3 \, \left (-a^{2} b\right )^{\frac{4}{3}}\right ) + \frac{1}{3} \, \left (-\frac{1}{a b^{2} d^{3}}\right )^{\frac{1}{3}} \log \left ({\left | a b d x + a b c + \left (-a^{2} b\right )^{\frac{2}{3}} \right |}\right )\right )}}{3 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^4/(a+b*(d*x+c)^3)^2,x, algorithm="maxima")

[Out]

-1/3*(d^2*x^2 + 2*c*d*x + c^2)/(b^2*d^4*x^3 + 3*b^2*c*d^3*x^2 + 3*b^2*c^2*d^2*x + (b^2*c^3 + a*b)*d) + 2/3*int
egrate((d*x + c)/(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a), x)/b

________________________________________________________________________________________

Fricas [B]  time = 1.70274, size = 1872, normalized size = 10.88 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^4/(a+b*(d*x+c)^3)^2,x, algorithm="fricas")

[Out]

[-1/9*(3*a*b^2*d^2*x^2 + 6*a*b^2*c*d*x + 3*a*b^2*c^2 - 3*sqrt(1/3)*(a*b^2*d^3*x^3 + 3*a*b^2*c*d^2*x^2 + 3*a*b^
2*c^2*d*x + a*b^2*c^3 + a^2*b)*sqrt((-a*b^2)^(1/3)/a)*log((2*b^2*d^3*x^3 + 6*b^2*c*d^2*x^2 + 6*b^2*c^2*d*x + 2
*b^2*c^3 - a*b + 3*sqrt(1/3)*(a*b*d*x + a*b*c + 2*(d^2*x^2 + 2*c*d*x + c^2)*(-a*b^2)^(2/3) + (-a*b^2)^(1/3)*a)
*sqrt((-a*b^2)^(1/3)/a) - 3*(-a*b^2)^(2/3)*(d*x + c))/(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a)) -
 (b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a)*(-a*b^2)^(2/3)*log(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2
+ (-a*b^2)^(1/3)*(b*d*x + b*c) + (-a*b^2)^(2/3)) + 2*(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a)*(-a
*b^2)^(2/3)*log(b*d*x + b*c - (-a*b^2)^(1/3)))/(a*b^4*d^4*x^3 + 3*a*b^4*c*d^3*x^2 + 3*a*b^4*c^2*d^2*x + (a*b^4
*c^3 + a^2*b^3)*d), -1/9*(3*a*b^2*d^2*x^2 + 6*a*b^2*c*d*x + 3*a*b^2*c^2 - 6*sqrt(1/3)*(a*b^2*d^3*x^3 + 3*a*b^2
*c*d^2*x^2 + 3*a*b^2*c^2*d*x + a*b^2*c^3 + a^2*b)*sqrt(-(-a*b^2)^(1/3)/a)*arctan(sqrt(1/3)*(2*b*d*x + 2*b*c +
(-a*b^2)^(1/3))*sqrt(-(-a*b^2)^(1/3)/a)/b) - (b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a)*(-a*b^2)^(2
/3)*log(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2 + (-a*b^2)^(1/3)*(b*d*x + b*c) + (-a*b^2)^(2/3)) + 2*(b*d^3*x^3 +
3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a)*(-a*b^2)^(2/3)*log(b*d*x + b*c - (-a*b^2)^(1/3)))/(a*b^4*d^4*x^3 + 3*
a*b^4*c*d^3*x^2 + 3*a*b^4*c^2*d^2*x + (a*b^4*c^3 + a^2*b^3)*d)]

________________________________________________________________________________________

Sympy [A]  time = 2.56427, size = 107, normalized size = 0.62 \begin{align*} - \frac{c^{2} + 2 c d x + d^{2} x^{2}}{3 a b d + 3 b^{2} c^{3} d + 9 b^{2} c^{2} d^{2} x + 9 b^{2} c d^{3} x^{2} + 3 b^{2} d^{4} x^{3}} + \frac{\operatorname{RootSum}{\left (729 t^{3} a b^{5} + 8, \left ( t \mapsto t \log{\left (x + \frac{81 t^{2} a b^{3} + 4 c}{4 d} \right )} \right )\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**4/(a+b*(d*x+c)**3)**2,x)

[Out]

-(c**2 + 2*c*d*x + d**2*x**2)/(3*a*b*d + 3*b**2*c**3*d + 9*b**2*c**2*d**2*x + 9*b**2*c*d**3*x**2 + 3*b**2*d**4
*x**3) + RootSum(729*_t**3*a*b**5 + 8, Lambda(_t, _t*log(x + (81*_t**2*a*b**3 + 4*c)/(4*d))))/d

________________________________________________________________________________________

Giac [A]  time = 1.17105, size = 282, normalized size = 1.64 \begin{align*} -\frac{2}{9} \, \sqrt{3} \left (-\frac{1}{a b^{5} d^{3}}\right )^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac{2}{3}}\right )}}{3 \, \left (-a^{2} b\right )^{\frac{2}{3}}}\right ) - \frac{1}{9} \, \left (-\frac{1}{a b^{5} d^{3}}\right )^{\frac{1}{3}} \log \left ({\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac{2}{3}}\right )}^{2} + 3 \, \left (-a^{2} b\right )^{\frac{4}{3}}\right ) + \frac{2}{9} \, \left (-\frac{1}{a b^{5} d^{3}}\right )^{\frac{1}{3}} \log \left ({\left | 3 \, a b^{2} d x + 3 \, a b^{2} c + 3 \, \left (-a^{2} b\right )^{\frac{2}{3}} b \right |}\right ) - \frac{d^{2} x^{2} + 2 \, c d x + c^{2}}{3 \,{\left (b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a\right )} b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^4/(a+b*(d*x+c)^3)^2,x, algorithm="giac")

[Out]

-2/9*sqrt(3)*(-1/(a*b^5*d^3))^(1/3)*arctan(1/3*sqrt(3)*(2*a*b*d*x + 2*a*b*c - (-a^2*b)^(2/3))/(-a^2*b)^(2/3))
- 1/9*(-1/(a*b^5*d^3))^(1/3)*log((2*a*b*d*x + 2*a*b*c - (-a^2*b)^(2/3))^2 + 3*(-a^2*b)^(4/3)) + 2/9*(-1/(a*b^5
*d^3))^(1/3)*log(abs(3*a*b^2*d*x + 3*a*b^2*c + 3*(-a^2*b)^(2/3)*b)) - 1/3*(d^2*x^2 + 2*c*d*x + c^2)/((b*d^3*x^
3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a)*b*d)